X-ray diffraction analysis of three-dimensional self-reinforcing monomer and its chemical interaction with tooth and hydroxyapatite.

نویسندگان

  • Yasuhiro Yoshida
  • Kumiko Yoshihara
  • Noriyuki Nagaoka
  • Masao Hanabusa
  • Takuya Matsumoto
  • Yasuko Momoi
چکیده

According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Some specific functional monomers form monomer-Ca salts due to chemical interactions. The chemical stability of the monomer-Ca salts was thought to contribute to bond durability. In the present study, we analyzed the chemical interaction between an acidic three-dimensional self-reinforcing monomer (3D-SR) of Bond Force and enamel, dentin and HAp, and assessed its chemical stability by thin-fi lm X-ray diffraction (TF-XRD). 3D-SR forms a hydrolysis-resistant Ca-salt on the dentin in a clinical application time period and on enamel and HAp in a longer time period. This suggests that the functional monomer 3D-SR is able to contribute to bond durability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophoretic Deposition of Microwave Combustion Synthesized Hydroxyapatite and Its Carbon Nanotube Reinforced Nanocomposite on 316L Stainless Steel

Nanohydroxyapatite-carbon nanotube Nanocomposite (HA-CNT) coatings were deposited via electrophoretic deposition (EPD). Hydroxyapatite was synthesized via microwave combustion method using calcium nitrate and glycing as starting materials. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that pure hydroxyapatite nanoparticles have been synthesized. AISI 316L s...

متن کامل

Bioresorbability Evaluation of Hydroxyapatite Nanopowders in a Stimulated Body Fluid Medium

     The bone mineral consists of tiny hydroxyapatite (HA) crystals in the nanoregime. Nanostructured HA is also expected to have better bioactivity than coarser crystals. This paper reports on the in vitro evaluation of bone like HA nanopowders. The prepared HA nanopowder was characterized for its phase purity, chemical homogeneity and bioactivity. Fourier transform infrared (FT-IR) s...

متن کامل

Synthesis and Characterization of Hydroxyapatite Nanocrystals via Chemical Precipitation Technique

     In this study, hydroxyapatite (HA) nanocrystals have been synthesized via chemical precipitation technique. Diammonium hydrogen phosphate and calcium nitrate 4-hydrate were used as starting materials and sodium hydroxide solution was used as the agent for pH adjustment. The powder sample was evaluated by techniques such as scanning electron microscope, transmission electron microscope, Fou...

متن کامل

High Biological performance of Silicon Substituted Nano Hydroxyapatite Synthesized in Simulated Body Fluid at 37°C

In this work, we report high biological performance of silicon substituted nano hydroxyapatite (nHA) prepared by immersion of calcium phosphate and sodium silicate as precursors in Simulated Body Fluid (SBF) solution for 24, 36, 48 and 72 hrs at 37°C. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform, infrared spectroscopy (FT-IR), X-ray powde...

متن کامل

High Biological performance of Silicon Substituted Nano Hydroxyapatite Synthesized in Simulated Body Fluid at 37°C

In this work, we report high biological performance of silicon substituted nano hydroxyapatite (nHA) prepared by immersion of calcium phosphate and sodium silicate as precursors in Simulated Body Fluid (SBF) solution for 24, 36, 48 and 72 hrs at 37°C. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform, infrared spectroscopy (FT-IR), X-ray powde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dental materials journal

دوره 31 4  شماره 

صفحات  -

تاریخ انتشار 2012